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Abstract: We describe experimental results and theoretical models for nuclear and electron spin relaxation
processes occurring during the evolution of 19F-labeled geminate radical pairs on a nanosecond time scale.
In magnetic fields of over 10 T, electron-nucleus dipolar cross-relaxation and longitudinal ∆HFC-∆g
(hyperfine coupling anisotropy - g-tensor anisotropy) cross-correlation are shown to be negligibly slow.
The dominant relaxation process is transverse ∆HFC-∆g cross-correlation, which is shown to lead to an
inversion in the geminate 19F chemically induced dynamic nuclear polarization (CIDNP) phase for sufficiently
large rotational correlation times. This inversion has recently been observed experimentally and used as
a probe of local mobility in partially denatured proteins (Khan, F.; et al. J. Am. Chem. Soc. 2006, 128,
10729-10737). The essential feature of the spin dynamics model employed here is the use of the complete
spin state space and the complete relaxation superoperator. On the basis of the results reported, we
recommend this approach for reliable treatment of magnetokinetic systems in which relaxation effects are
important.

Introduction

Many fluorine-containing aromatic radicals and a number of
phosphorus-centered radicals exhibit large and strongly aniso-
tropic hyperfine couplings (HFC), sometimes exceeding 20 mT
in strength.1,2 While large HFC anisotropy mostly generates
unwanted complications in conventional electron paramagnetic
resonance (EPR) spectroscopy, it can lead to qualitatively new
phenomena in magnetochemical experiments, such as chemically
induced dynamic nuclear polarization (CIDNP)3,4 and chemically
induced dynamic electron polarization (CIDEP),4,5 which rely
on a delicate interplay between spin dynamics and chemical
kinetics.

Here we explore, both theoretically and experimentally, the
effect of nuclear spin relaxation, cross-relaxation, and cross-
correlation induced by the anisotropy of hyperfine andg-tensors
on the geminate photo-CIDNP effect in fluorine-containing
radicals. Apart from radicals containing19F and31P, the results
are likely to be applicable to13C- and15N-containing species,
as these nuclei can also have rather large isotropic and
anisotropic HFCs in aromatic radicals, though usually not as

large as those of19F and31P.6,7 Given the proven utility of photo-
CIDNP methods in protein folding research,8 the results will
be particularly useful in the context of13C, 15N, and19F photo-
CIDNP spectroscopy of isotopically labeled proteins.9,10

The starting point for the present work was provided by
experimental observations9,10of 19F photo-CIDNP enhancements
whose phases are opposite in sign to those predicted by the
existing models,11-16 and which depend strongly on the mo-
lecular size and rotational correlation time. Below, we review
reports of unexpected results from CIDNP and CIDEP experi-
ments involving 19F-containing radicals and verify that the
existing models (based on the Overhauser effect11,17,18or simi-
lar cross-relaxation and cross-correlation processes14-16,19) are
not consistent with phase inversions in measurements performed
at high field (>10 T). We then perform a complete relaxation
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analysis of our system, including all nonsecular and pseudo-
secular terms, demonstrate that it successfully explains the
experimental observations, and identify the relaxation pathways
responsible.

Experimental and Computational Techniques

Our photo-CIDNP installations, as well as theirmodus operandi,
are described in detail elsewhere.20,21To achieve efficient illumination
of strongly colored green fluorescent protein (GFP) solutions, a
stepwise-tapered optical fiber was used in continuous-wave photo-
CIDNP experiments, which permits efficient illumination of even very
optically dense samples.22 The preparation of fluorine-labeled Trp-cage
protein23 is described in detail in ref 10, and that of fluorine-labeled
GFP is described in ref 9.

For 19F and1H photo-CIDNP experiments on 3-fluorotyrosine, D2O
solutions were used, each containing 4.0 mM 3-fluoro-DL-tyrosine
(Lancaster), 0.2 mM flavin mononucleotide (FMN, Sigma), and 0-60%
(by volume) of glycerol-d8 (Cambridge Isotope Laboratories) at pH
7.0 (uncorrected for the deuterium isotope effect). For CIDNP experi-
ments on fluorine-labeled GFP, its concentration in phosphate-buffered
(50.0 mM, pH 7.2) D2O was chosen to give an optical density of 1.0
at 514 nm, with 1.0 mM concentration of FMN. Photo-CIDNP
experiments on Trp-cage were performed with 1.0 mM solutions in
either pure D2O or 5.0-7.0 M solutions of urea-d4 in D2O with 0.2
mM FMN as a photosensitizer.

The density functional theory (DFT) calculations were performed
using the Gaussian03 program.24 The equilibrium geometries were
obtained from B3LYP/6-31++G(2d,2p) calculations performed in a
combination of explicit (first solvation shell for polar groups) and
implicit (PCM with UAKS topological atom model) water. Hyperfine
and g-tensors were then computed for the resulting geometry on a
GIAO B3LYP/EPR-III level of theory. This semi-explicit solvent
approach yields hyperfine couplings in amino acid radicals that are in
much better agreement with experimental results than calculations
performed in Vacuo.25 All calculation logs can be found in the
Supporting Information.

Ellipsoid plots of hyperfine tensors were generated using the
hfc_display program, written in the Matlab 7.0 environment and listed
in the Supporting Information. The program parses a single-point
Gaussian log and draws every ellipsoid in the following way:

1. A unit sphere in a Cartesian space is scaled by|A11| in the X
direction, |A22| in the Y direction, and|A33| in the Z direction, where
Aii are the eigenvalues of the HFC tensor andX, Y, andZ denote the
principal axes of the tensor.

2. A set of three eigenaxes is drawn inside the ellipsoid with red for
a positive eigenvalue and blue for a negative one.

3. The ellipsoid is translated to the position of the corresponding
atom and rotated into the molecular frame.

Arguably, a more consistent way of representing the anisotropy of
a symmetric second rank tensor would be to pull the ellipsoid inside-
out through zero for negative eigenvalues so that the resulting plot looks
like (and is in fact related to) a superposition ofY2,m(θ,æ) spherical
harmonics. It was found, however, that with this faithful representation
the picture gets rather cluttered. Since the hyperfine tensor operates in
a direct product of spin operator spaces, which fundamentally have no
classical analogue, we believe that the details of its representation in a
Cartesian space are a matter of convenience.

In deriving the relaxation superoperator for our model spin system,
we make use of a convenient and powerful implementation of Bloch-
Redfield-Wangsness (BRW) relaxation theory, based on rotation group
theory and automated pattern matching. A detailed description of this
approach, together with a few examples, can be found in our recent
paper.26 The specific program (written in Mathematica 5.2) we used to
facilitate the relaxation theory treatment performed here may be found
in the Supporting Information.

Survey of Experimental Observations

The starting point for the present work was the observation
of 19F photo-CIDNP effects in large fluorine-labeled molecules
for which the phase of the net19F polarization was contrary to
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Figure 1. (A) 19F NMR (top) and photo-CIDNP (bottom) spectra of Y200F and Y151F mutants of 3-fluorotyrosine-labeled green fluorescent protein. (B)
Aromatic region of the1H NMR and photo-CIDNP spectra of 3-fluorotyrosine as the free amino acid (top and middle) and as an amino acid residue in the
Trp-cage protein (bottom). (C)19F NMR and photo-CIDNP spectra of 3-fluorotyrosine-labeled Trp-cage protein as a function of temperature. The van’t Hoff
analysis of NMR intensities in the left panel results in∆H° ) 7.6 ( 1.6 kJ mol-1, ∆S° ) 23 ( 5 J K-1 mol-1, assuming a two-state chemical equilibrium,
which we attribute to proline isomerization. (D)19F photo-CIDNP spectrum of 3-fluorotyrosine-labeled green fluorescent protein as a function of pH at 25
°C. (E) 19F photo-CIDNP spectrum of 3-fluorotyrosine-labeled Trp-cage protein as a function of denaturant concentration and temperature. (Panels A and
D reproduced with permission from ref 9. Copyright 2006 American Chemical Society.)
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Kaptein’s sign rule.13 The experimental results we reported
earlier,9,10 and which we seek to explain here, are summarized
in Figures 1 and 2. At a magnetic induction of 14.1 T (600
MHz 1H NMR frequency), the following observations were
made: (1) The19F photo-CIDNP effect in 3-fluorotyrosyl
residues in two proteins (GFP9 and the TC5b variant of Trp-
cage10) has a phase (emissive, Figure 1A,C) opposite to that of
free 3-fluorotyrosine (absorptive) in aqueous solution.21 How-
ever, the1H photo-CIDNP effects have the same phase in a
protein and the free amino acid (Figure 1B).10 (2) The sign of
the 19F photo-CIDNP effect changes from positive to negative
for 3-fluorotyrosine and 4-fluorophenol when the solvent
viscosity is increased (Figure 2A,B) by the addition of glycerol.
The phase of the1H photo-CIDNP effect in the same system is
unchanged.10 (3) For 3-fluorotyrosyl residues in GFP and Trp-
cage, the sign of the19F photo-CIDNP effect changes from
negative to positive when the protein is unfolded (Figures 1C-E
and 2A). Once again, the1H CIDNP in the same residue is
unaffected (not shown). (4) In all cases, it is the geminate
CIDNP4 that changes sign. This is observed both directly (i.e.,
when the geminate effect is measured in a time-resolved CIDNP
experiment) for 4-fluorophenol (Figure 2B) and indirectly (in
a steady-state photo-CIDNP experiment) for 3-fluorotyrosine
(Figure 2A). It has been shown that, due to fast spin relaxation
of the 19F nucleus in the radicals (T1 ) 0.13 µs), the steady-
state19F CIDNP effect in 3-fluorotyrosine contains only the
geminate contribution.20 (5) The 19F photo-CIDNP effect can
have different signs for different 3-fluorotyrosyl residues in the
same protein, depending on their respective mobilities (Figure
1C-E).9,10

For the fluorine nucleus in the photoreactions of both
3-fluorotyrosine and 4-fluorophenol with FMN (Figure 3A), all
four factors in Kaptein’s sign rule for net nuclear polarization13

are positive:

In this equation,∆g is the difference between theg-values of
the two radicals (fluorine-containing radical minus FMN radical)
and Ai is the hyperfine coupling constant of the nucleus in
question. The electron transfer in our systems is known to be
initiated by a photoexcited triplet flavin molecule, and the
recombination products are observed16 (Figure 3B), so both the
µ andε factors are positive. Together with the experimentally
determined27 or computed (see Table 1, below)g-values and
hyperfine couplings, this results in the prediction of absorptive
enhancement, which is indeed observed for the free 3-fluoro-
tyrosine and 4-fluorophenol in aqueous solution.10,21

To explain the experimentally observed phase inversion,
without introducing additional sources of nuclear polarization,
one of the factors in eq 1 must have a continuous dependence
on temperature and/or solvent viscosity, possibly through another
temperature- or viscosity-dependent parameter. Any change in
theµ or ε factors should lead to a photo-CIDNP phase change
for all nuclei simultaneously. This is not what is observed; nor

Figure 2. (A) Temperature dependence of the steady-state19F photo-CIDNP effect in water/glycerol solutions of 3-fluorotyrosine and in aqueous solution
of 3-fluorotyrosine-labeled Trp-cage protein with FMN as the photosensitizer. (B) Temperature dependence of the geminate19F photo-CIDNP effect in
water/glycerol solutions of 4-fluorophenol with FMN.

Figure 3. (A) Structures and atom numbering for 3-fluorotyrosine and flavin mononucleotide. (B) Schematic plot of the cyclic photochemical reaction
chain responsible for the generation of the photo-CIDNP effect in FMN-sensitized systems.16

Γnet(i) ) µ ε sign(∆g) sign (Ai) ) {+ absorptive
- emissive };

µ ) {+ triplet precursor
- singlet precursor};

ε ) {+ recombination products
- escape products }

(1)
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is it likely that µ could be negative, since the intersystem
crossing in photoexcited flavins is known to be very fast.28

Introducing an electronic structure perturbation sufficient to alter
the sign of the19F hyperfine coupling or to shift theg-value
requires either a large amount of energy (hyperfine coupling)
or the introduction of strong spin-orbit coupling (g-factor).
Neither is likely to be caused simply by raising the temperature
by 15 °C (as shown in Figure 1E). The conclusion, therefore,
is that some process or factor not included in Kaptein’s rule is
responsible. The chief suspect is spin relaxation, because the
rotational correlation time is the obvious parameter that depends
significantly on temperature, solvent viscosity, molecular size,
and, for a protein, denaturation.

The unexpected behavior of the19F photo-CIDNP phase
observed for small molecules appears to have a complex history,
with attempted rationalizations mostly revolving around dipolar
relaxation processes such as the Overhauser effect.11,14,18,19,29

A number of publications have reported unexpected contribu-
tions to the high-field CIDNP of Period II elements, manifested
either at high viscosities or for very long-lived radicals in
nonviscous solvents.30-32 Fluorine, with its large hyperfine
coupling, has been cited as a classical example of Overhauser
CIDNP, as proposed by Adrian in the 1970s.11,18,19,33,34In a
paper11 analyzing earlier experimental work onp,p-difluoro-
bibenzyl,35 Adrian reports detection of only19F polarization,
whereas, according to the EPR hyperfine coupling data,1H
polarization should also have been observed. Fluorine seemed
to be special, and this was attributed to electron-nuclear cross-
relaxation caused by the large HFC anisotropy of the fluorine
nucleus.11 A number of later works have also found or suspected
an Overhauser contribution to CIDNP or CIDEP generation.
For example, Borbat et al. argued that the inversion of a CIDEP
multiplet effect from E/A to A/E is likely to be caused by cross-
relaxation in high-viscosity solutions.36

However, doubts have been cast on the Overhauser CIDNP
idea: for example, Batchelor and Fischer37 argued that earlier
studies of photochemically generated CIDEP had incorrectly
ascribed certain phenomena to cross-relaxation. They have
demonstrated that, at a field of 4.7 T, cross-relaxation is
negligibly slow and suggested instead that side reactions and
fast solvent-dependent nuclear relaxation are responsible for the
observed perturbation in the photo-CIDNP effect in the pho-
tochemical reaction of acetone and propan-2-ol. Also, Valyaev
et al. ruled out an Overhauser mechanism as an explanation for
certain unexpected CIDEP patterns, on the grounds that it is
too slow under the conditions of their experiments.29 What
exactly caused those patterns is still unclear; as in the case of
the acetone/propan-2-ol reaction,37 secondary radical reactions
might be responsible.

The chief problem with Overhauser CIDNP and a large class
of related longitudinal cross-relaxation and cross-correlation
mechanisms is that, in high fields (14.1 T in our case), the cal-
culations using BRW theory38 and the models proposed by
Adrian et al.11,18,19and later Tsentalovich et al.14,15 all lead to
values of the paramagnetic cross-relaxation and/or cross-correla-
tion rates that are far too small to have any influence on the
nanosecond time scale of geminate radical pair spin dynamics.
A detailed analysis (which we present below) concludes that,
while these mechanisms are clearly operational at lower fields
and slower time scales,11,39they do not explain our observations.

Analysis of Existing Models of Relaxation in CIDNP
Systems

The first discussions of electron-nuclear dipolar cross-
relaxation in the context of the CIDNP effect are attributed to
Ward and Lawler40,41 and to Bargon and Fischer.42,43 Their
description was subsequently adapted to the case of19F CIDNP
by Adrian and co-workers.18 It considers only populations
(neglecting coherences and cross-correlations) and includes all
the pathways shown in Figure 4, amounting essentially to a
classical four-level population dynamics model. It includes
single-quantum transitions, corresponding to single spin flips
(Wn andWe terms), as well as double-quantum and zero-quantum
transitions involving double spin flips (W0 andW2 terms). The
transitions are assumed to be caused, in second-order time-
dependent perturbation theory, by the stochastic modulation of
the hyperfine coupling in one of the partners of the radical pair.

Our treatment (using the “BRW processor”26) of Adrian’s
model resulted in the following expressions for the transition
rates shown in Figure 4:
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Figure 4. Energy levels and longitudinal relaxation transitions in an
electron-nuclear two-spin system. Adapted, with modifications, from
Adrian’s treatment.18 See text for explanation of symbols.
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in which J(ω) is the spectral density function,ωe and ωn are
Zeeman frequencies of electron and nucleus, respectively, and
the hyperfine tensor andg-tensor anisotropy parameters are
defined as

whereT refers to either the Zeeman or the hyperfine tensor and
Ax andRh refer to the axiality and rhombicity of these tensors.

Even though it is often neglected, the spectral density func-
tion, strictly speaking, is not an even function of the frequency
argument. We will omit this approximation and keep the

frequencies correctly signed. We also have an option here to
improve the accuracy of eqs 2 slightly by also accounting for
theg-hyperfine cross-correlation in the BRW theory treatment.
We then get an electron relaxation rate differential between sub-
ensembles with different nuclear subspace configurations:

The cross-correlation parameterXG,HFC can be written as

where the Wigner functionsDm,k
(2) (R,â,γ) depend on the three

(42) Bargon, J.; Fischer, H.Z. Naturforsch. A: Astrophys., Phys. Phys. Chem.
1967, 22, 1556-1562.

(43) Bargon, J.; Fischer, H.; Johnsen, U.Z. Naturforsch. A: Astrophys., Phys.
Phys. Chem.1967, 22, 1551-1555.

Table 1. Calculateda Hyperfine Couplings and g-Tensors for the 3-Fluorotyrosyl Radical and FMN Anion Radical

radical atom
(aXX + aYY + aZZ)/3,

mT
|2aZZ − (aXX + aYY)|,

mT
|aXX − aYY|,

mT
g-tensor

parameters

3-fluorotyrosyl C(2)-H 0.24 0.38 0.09 gxx ) 2.0021
C(3)-F 1.25 14.16 0.44 gyy ) 2.0051
C(5)-H -0.52 1.01 0.16 gzz) 2.0073
C(6)-H 0.15 0.35 0.08 giso ) 2.0048
C(1)-CH2-b 0.41, 0.81 0.40,0.40 0.03, 0.03

flavin mononucleotide N(3)-H -0.02 0.20 0.03 gxx ) 2.0019
anion C(6)-H -0.30 0.48 0.04 gyy ) 2.0041

C(9)-H 0.10 0.26 0.06 gzz) 2.0045
C(7)-CH3

b -0.13,-0.13,-0.02 0.12,0.12, 0.13 0.01, 0.01, 0.01 giso ) 2.0035
C(8)-CH3

b 0.64, 0.65, 0.02 0.21, 0.21, 0.17 0.01, 0.01, 0.00
N(10)-CH2-b 0.20, 0.15 0.31,0.30 0.01, 0.01

a Using GIAO DFT B3LYP 6-31++G(2d,2p)/EPR-III method in explicit+ PCM water; see also Figure 5.b Conformationally mobile group; values
given for the lowest energy conformation.

Figure 5. Stereoviews of (A) 3-fluorotyrosine and (B) flavin mononucleotide geometry obtained from B3LYP/6-31++G(2d,2p) calculations performed in
a combination of explicit (first solvation shell for polar groups) and implicit (PCM with UAKS topological atom model) water. The purple surface is the
solvation surface used in the PCM calculation. The ribityl side chain of the FMN has been truncated to an ethyl group. (C) Stereoview of an ellipsoid plot
of hyperfine tensors in the 3-fluorotyrosyl radical. The hyperfine coupling tensors were computed using an EPR-III basis with the other parameters as above.
(D) Relative orientations of the19F hyperfine tensor and theg-tensor of the 3-fluorotyrosyl radical. Theg-tensor was computed using the GIAO method in
an EPR-III basis with the other parameters as above. The free electrong-factor was subtracted from the resultingg-tensor prior to plotting, to expose its
anisotropy. (E) Stereoview of an ellipsoid plot of hyperfine tensors in flavin mononucleotide anion radical. The hyperfine coupling tensors were computed
using an EPR-III basis with the other parameters as in panels A and B.
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Euler angles that link the eigenframes of the Zeeman and
hyperfine tensors. TheXG,HFC parameter in the form given in
eq 5 deserves a special mention. It is the most general form of
the cross-correlation parameter for any pairwise cross-correlation
between any second-rank spin interaction tensors. In the axial
case it simplifies to the familiar expression44,45

in which â refers to the angle between the main axes of the
two tensors. Equation 6 is frequently encountered in the con-
text of pairwise cross-correlations in NMR spectroscopy.45,46

We have yet to find the full form of eq 5 in the literature; it
may become useful once the accuracy of cross-correlation ex-
periments in NMR improves beyond the axial approximation,
e.g., for cross-correlation of rhombic chemical shift tensors.26

In the case of the 3-fluorotyrosyl radical, all of the re-
quired interaction parameters may be computed (Table 1, Fig-
ure 5, and Gaussian0324 logs in the Supporting Information).
The resulting values (in squared angular frequency units at
14.1 T) are∆G

2 ) 1.26× 1020, ∆HFC
2 ) 6.24× 1018, andXG,HFC

) -4.26× 1018. In the isotropic tumbling approximation, i.e.,
with

(whereτc is the rotational correlation time), the transition rates
in eqs 2 and 4 for the case of the 3-fluorotyrosyl radical in a
14.1 T magnetic field are plotted against the correlation time
in Figure 6. It is obvious that, across the entire range of
experimentally available correlation times (10 ps-10 ns), the
electron-nucleus cross-relaxation ratesW0 andW2 are too small
to exert any influence whatsoever on the nanosecond to
microsecond time scale photo-CIDNP spin dynamics a conse-
quence of having the square of the electron Larmor frequency
in the spectral density denominators in eqs 2. Although the
nuclear relaxation rateWn may become large enough to manifest
itself in secondary reactions (3.6× 106 s-1 for τc ) 0.3 ns,
Figure 6), it does not lead to spin selection, sinceWn

e+ ) Wn
e-.

Thus, at the field of 14.1 T, no nuclear spin selection occurs as
a result of the relaxation transitions shown in Figure 4.

Tsentalovich and co-workers have extended Adrian’s descrip-
tion of Overhauser CIDNP14,15by explicitly including longitu-
dinal multi-spin orders in the relaxation treatment, thereby
expanding the number of spin states that are properly accounted
for in the model. As applied to the above model of 3-fluoro-
tyrosine radical, this refinement amounts to including the
longitudinal two-spin order 2LZNZ (here and below,L and S
denote electron spin operators andN the nuclear ones) in the
description. Within BRW theory, we obtained the following rate
for the LZ T 2LZNZ transition:

It is obvious from Figure 7 that, at 600 MHz, this extended
model suffers from the same problem as Adrian’s model: actual
calculations lead to values of the rates that are far too small to
have any influence on the photo-CIDNP time scale.

On the positive side, it had been proven very convincingly18,39

that, at low magnetic field(<20 MHz 1H frequency), the
Overhauser mechanism does contribute to the generation of
photo-CIDNP polarization of fluorine nuclei. This is correctly
predicted by eqs 2 and 4 above, because the spectral density
denominators at 20 MHz are no longer small. At higher fields,
the Overhauser effect can still be detected if the lifetime of the
intermediate radicals is prolonged beyond several tens of
microseconds, as happens in the system reported by Roth et
al.32 However, this is not the case here (at 600 MHz).

In summary, it is well established that, at low field, the
electron does cross-relax with the nucleus during the lifetime(44) Goldman, M.J. Magn. Reson.1984, 60, 437-452.

(45) Kumar, A.; Grace, R. C. R.; Madhu, P. K.Prog. Nucl. Magn. Reson.
Spectrosc.2000, 37, 191-319. (46) Kumar, A.; Madhu, P. K.Concepts Magn. Reson.1996, 8, 139-160.

Figure 6. Rotational correlation-time dependence of the rates of relaxation transitions (eqs 2 and 4) for the 3-fluorotyrosine radical at 14.1 T magnetic field
using the computed values of hyperfine andg-tensor anisotropy.

XG,HFC )
AxGAxHFC

12
[3 cos2 â - 1] (6)

J(ω) )
τc

(1 + τc
2 ω2)

+
iω τc

2

(1 + τc
2 ω2)

(7)

Figure 7. Rotational correlation-time dependence of the longitudinal∆HFC
- ∆g cross-correlation rateW(LZ T 2LZNZ) for the 3-fluorotyrosine radical
at 14.1 T magnetic field using the computed values of hyperfine andg-tensor
anisotropy.

W(LZ T 2LZNZ) ) -
XG,HFC

10
[J(-ωe) + J(ωe)] (8)
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of the radical pair, provided the HFC anisotropy is large enough.
Why the same thing appears to happen at high fields is less
clear- the simple calculation outlined above demonstrates that,
in a 600 MHz magnetic field, all the longitudinal relaxation,
longitudinal cross-relaxation, and longitudinal cross-correlation
rates become too small and cannot, at least according to the
current models, exert an influence on the nanosecond to
microsecond time scale of photo-CIDNP generation. Below we
report a detailed theoretical investigation, which identifies the
mechanism responsible.

Complete Relaxation Superoperator Model Results and
Discussion

It is apparent from the above discussion that spin dynamics
models that include only a selection of the possible spin orders
and relaxation mechanisms fail to predict the experimentally
observed behavior. We therefore decided to adopt a brute force
approach, namely to compute acomplete (4096 elements)
symbolic relaxation superoperator for the three-spin system (two
electrons and a nucleus) under consideration using our recently
developed symbolic processing software,26 and then to perform
the spin dynamics calculation in the complete operator space,
including transverse magnetization and other coherence opera-
tors. If a dependence of the high-field geminate19F photo-
CIDNP on the correlation time is predicted, one can then try to
identify the relaxation pathway(s) responsible.

An essential feature of fluorinated aromatic radicals is the
large and strongly anisotropic19F hyperfine coupling. The
isotropic HFCs may reach 5 mT in radical cations10 and over
20 mT in nonplanar radical anions2 (a typical hyperfine coupling
to an aromatic proton ise0.7 mT). The19F hyperfine anisotropy
is also very large, e.g., 24.2 mT in the 4-fluorophenoxyl
radical.10 Rotational modulation of hyperfine interactions, along
with rotational modulation of the anisotropic Zeeman interaction,
is the primary relaxation mechanism in aromatic radicals in
liquids;47 furthermore, the relaxation rate is quadratic in HFC
anisotropy. We should therefore expect nuclear spin relaxation
to be very fast, at least for some correlation times, and expect
relaxation processes to play a major role in19F CIDNP
formation. Because the applied magnetic field is very high (14.1
T), we should also include the Zeeman interaction anisotropy
and Zeeman-HFC cross-correlation, since the Zeeman mech-
anism is quadratic in the field and rapidly becomes important
as one moves to higher fields.

A number of assumptions need to be made before we can
proceed with the modeling and relaxation theory treatment of
spin dynamics in 3-fluorotyrosine/FMN radical pairs. Because
the19F hyperfine coupling is significantly stronger than any other
HFC in either 3-fluorotyrosine cation or FMN anion (see Table
1 and Figure 5), we will use a single-nucleus approximation
(i.e., we treat a system comprising two electron spins and the
19F spin). Since the applied field is strong, the nonsecular parts
of the isotropic Zeeman and isotropic hyperfine interactions will
be neglected. We will also neglect the anisotropy of the nuclear
shielding tensor: at 14.1 T, it is of the order of kilohertz and is
completely swamped by the much stronger Zeeman and hyper-
fine interactions, in both zero-order and relaxation theory contri-
butions. The inter-electron dipolar and exchange interactions
will also be neglected for two reasons. First, the two radicals
are assumed to be sufficiently far apart on average that the effect

of these interactions is small.4 Second, we are seeking, in this
treatment, to explain a nucleus-centered phenomenon, for which
these inter-electron couplings cannot be responsible. Finally,
we shall neglect the coupling between the spatial and spin
degrees of freedom (normally caused by the above-mentioned
dipolar and exchange interactions) by using a spin-independent
re-encounter probability distribution, which will be combined
with a separately computed spin evolution trajectory.

With the assumptions outlined above, the spin Hamiltonian
of a single-nucleus radical pair, separated into the “strong” time-
independent part,Ĥ0, and the “weak” stochastic part,Ĥ1(t), has
the following form:

whereωL, ωS, andωn are the Larmor frequencies of the two
electrons and the nucleus,a is the isotropic hyperfine coupling
constant,R̂̂posare the static “positioning” rotations that take the
interaction tensors (A for hyperfine andZ1,2 for Zeeman) from
their eigenframes to the molecular frame, andR̂̂mol

(1,2) are the
time-dependent overall rotations of the two radicals, together
with the interactions defined within them. Translating the
operators and rotations in the perturbation part into irreducible
spherical tensor notation,26,48,49we get

whereM k,m
(2) (t) andN k,m

(2) (t) are Wigner functions defining the
laboratory frame orientation of the first and second radicals,
respectively, andΦm

(HFC), Φm
(Z1), andΦm

(Z2) are linear combina-
tions of Wigner functionsDm,k

(2) defining the orientations of the
hyperfine and two Zeeman tensors (eigenvaluesAXX, AYY, AZZ

with A ) Z1, Z2, or HFC) in their respective molecular frames.
For the rotational correlation functions of both radicals, we

will make the isotropic tumbling approximation; therefore, the
correlation functions are exponentials:

where the overbar denotes ensemble averaging andτc
(1,2) are

the rotational correlation times of the two radicals. Because the
radicals are assumed to have moved sufficiently far apart to

(47) Kowalewski, J.; Ma¨ler, L. Nuclear spin relaxation in liquids: theory,
experiments, and applications; Taylor & Francis: London, 2006; p 252.

(48) Freed, J. H.; Fraenkel, G. K.J. Chem. Phys.1963, 39, 326-348.

Ĥ0 ) ωLL̂Z + ωSŜZ + ωnN̂Z + aL̂ZN̂Z

Ĥ1(t) ) R̂̂mol
(1) R̂̂pos

HFC(L̂B‚A‚N̂B) + R̂̂mol
(1) R̂̂pos

Z1 (L̂B‚Z1‚BB) +

R̂̂mol
(2) R̂̂pos

Z2 (ŜB‚Z2‚BB)

(9)

Ĥ1(t) ) ∑
k,m)-2

2

M k,m
(2) (t)[T̂2,k

(HFC) Φm
(HFC) + T̂2,k

(Z1) Φm
(Z1)] +

∑
k,m)-2

2

N k,m
(2) (t)[T̂2,k

(Z2)Φm
(Z2)] (10)

Φm
(A) )

AXX - AYY

2
(Dm,-2

(2) + Dm,2
(2) ) +

2AZZ - (AXX + AYY)

x6
Dm,0

(2) (11)

M a,b
(2)(t) M c,d

(2)*(t + τ) )
δa,cδb,d

5
e-τ/τc

(1)

N a,b
(2)(t) N c,d

(2)*(t + τ) )
δa,cδb,d

5
e-τ/τc

(2)

(12)
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behave independently, the rotational functionsM m,k
(2) (t) are

independent ofN m,k
(2) (t), meaning that all ensemble correlation

functions between the two sets are zero:

Because theg-tensor and the hyperfine coupling tensor in
the first radical share the same set of overall rotation func-
tions M m,k

(2) (t) in the Hamiltonian (eq 10), the cross-correla-
tion between the anisotropies of these tensors will be cor-
rectly accounted for.26 As we shall see below, it is this cross-
correlation that causes the CIDNP phase to invert for long
correlation times.

Submitting the Hamiltonian (eq 10) with correlation functions
(eqs 12 and 13) into the BRW theory processor described
elsewhere26 yields the relaxation and cross-relaxation rates
reported in Tables 2 and 3. The program gives the general
result, which includes the dynamic frequency shift and all
nonsecular components. For example, the self-relaxation rate

of the L+ + 2L+ NZ eigenstate ofĤ̂0 is

whereL( ) LX ( iLY and other symbols were defined above.
So far as BRW theory goes, eq 14 is exact. However, this high
level of detail is rarely necessary, and we can make considerable
simplifications by observing that, in our case,a/2 , ωn , ωL,S

and neglecting the dynamic frequency shifts, i.e., setting
J(-ω) ) J(ω). With that in place, the result forL+ + 2L+NZ

simplifies to

and it is expressions of this type that we chose to tabulate
(Tables 2 and 3). The relaxation of the other radical (flavin
mononucleotide anion) is assumed to be dominated by the
g-tensor anisotropy term, since there are no large hyperfine
anisotropies (Table 1). The corresponding rates may be obtained
from Table 2 by setting∆HFC

2 ) 0, XG1,HFC ) 0 and replacing
∆G1

2 with ∆G2
2 .

The resulting relaxation superoperator contains three classes
of transitions. The “secular” ones, such as theLZ f NZ elec-
tron-nuclear cross-relaxation, occur between the eigenstates of
Ĥ̂0 with zero frequency separation (the eigenvalues are given
in Table 2). We certainly need to retain those. The “weakly
nonsecular” class comprises those transitions which occur over
relatively narrow frequency gaps (e.g.,∆ω ) a or ∆ω ) ωn),

(49) Sanctuary, B. C.; Halstead, T. K.AdV. Magn. Reson.1990, 15, 79-161.

Table 2. Self-Relaxation Rates of Ĥ̂0 Eigenstatesa

spin order Ĥ̂0 eigenvalue dipolar part Zeeman part cross-correlation part

LZ 0 -(∆HFC
2 /36)J(ωL) -(∆G1

2 /30)J(ωL) 0

NZ 0 -(∆HFC
2 /36)[3J(ωN) + 7J(ωL)] 0 0

LZNZ 0 -(∆HFC
2 /120)[J(ωN) + J(ωL)] -(∆G1

2 /30)J(ωL) 0

N( + 2N(LZ (ωN ( a/2 -(∆HFC
2 /720)[4J(0) + 3J(ωN) + 10J(ωL)] -(∆G1

2 /60)J(ωL) 0

N( - 2N(LZ (ωN - a/2 -(∆HFC
2 /720)[4J(0) + 3J(ωN) + 10J(ωL)] -(∆G1

2 /60)J(ωL) 0

L( + 2L(NZ (ωL ( a/2 -(∆HFC
2 /720)[4J(0) + 3J(ωN) + 10J(ωL)] -(∆G1

2 /180)[4J(0) + 3J(ωL)] -(XG1,HFC/30)[4J(0) + 3J(ωL)]

L( - 2L(NZ (ωL - a/2 -(∆HFC
2 /720)[4J(0) + 3J(ωN) + 10J(ωL)] -(∆G1

2 /180)[4J(0) + 3J(ωL)] +(XG1,HFC/30)[4J(0) + 3J(ωL)]

L(N( (ωL ( ωN -(∆HFC
2 /240)[J(ωN) + 5J(ωL)] -(∆G1

2 /180)[4J(0) + 3J(ωL)] 0

L(N- (ωL - ωN -(∆HFC
2 /720)[3J(ωN) + 5J(ωL)] -(∆G1

2 /180)[4J(0) + 3J(ωL)] 0

a See text for the list of assumptions and approximations used in deriving these expressions.

Table 3. Secular and Weakly Nonseculara Cross-Relaxation Rates between Ĥ̂0 Eigenstates

source spin order destination spin order absolute Ĥ̂0 eigenvalue difference dipolar part Zeeman part cross-correlation part

LZ NZ 0 -(∆HFC
2 /72)J(ωL) 0 0

LZNZ 0 0 0 -(XG1,HFC/5)J(ωL)

NZ LZ 0 -(∆HFC
2 /72)J(ωL) 0 0

LZNZ LZ 0 0 0 -(XG1,HFC/5)J(ωL)

N( + 2N(LZ N( - 2N(LZ a -(∆HFC
2 /240)J(ωL) -(∆G1

2 /60)J(ωL) 0

N( - 2N(LZ N( + 2N(LZ a -(∆HFC
2 /240)J(ωL) +(∆G1

2 /60)J(ωL) 0

L( - 2L(NZ L( + 2L(NZ a -(∆HFC
2 /240)J(ωN) 0 0

L( + 2L(NZ L( - 2L(NZ a -(∆HFC
2 /240)J(ωN) 0 0

a The definitions of secular and weakly nonsecular cross-relaxation rates and the list of assumptions and approximations used in deriving these expressions
are given in the main text.

RL++2L+NZ
) -

∆HFC
2

720
[4J(0) + 3J(ωn) + 10J(ωL)] -

∆G1
2

180
[4J(0) + 3J(ωL)] -

XG1,HFC

30
[4J(0) + 3J(ωL)] (15)

M m,k
(2) (t) N m′,k′

(2) (t + τ) ) 0 (13)
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such asN( + 2N(LZ f N( - 2N(LZ. Because the relaxation
events in our system are expected to operate on the microsecond
to nanosecond time scale, such frequency gaps are small enough
for these relaxation pathways to be manifested, so we keep them
as well. The “strongly nonsecular” class contains transitions
which occur over frequency differences of the order of∆ω )
ωL,S. These transitions are firmly nonsecular in the system under
study and are likely to be unimportant. Table 3, therefore,
contains only the secular and weakly nonsecular terms of the
relaxation superoperator. The simulation was still done with the
full unsimplified relaxation matrix (the Mathematica program
included in the Supporting Information will print the nonsecular
terms on demand).

With the relaxation superoperator generated as described
above, we can compute the spin dynamics in the 3-fluoroty-
rosine/FMN system by brute force, by numerically propagating
the initial electron-only triplet state, all the way to complete
magnetization equilibration, i.e., to 5 times the reciprocal of
the slowest relaxation rate. During the actual calculations, care
must be taken not to exceed the applicability range of the BRW
theory, which is roughlyτc , min{Ri

-1}, where Ri are the
computed relaxation rates. This criterion is likely to have an
ample safety margin,38,50 and it is generally believed that the
theory remains quantitatively correct untilτc ≈ max{Ri

-1}, and
there are indications that it may be reliable far beyond that
point.51

For the radical re-encounter probability distribution, we chose
the function proposed by Noyes,52,53 which is known to
reproduce experimental findings in a large variety of systems.
In practice, it is convenient to use a mathematically equivalent
formulation, suggested by Adrian,12 which is parametrized in a
more transparent way:

whereD is the relative diffusion coefficient of the two radicals,
R0 is the initial radical separation (assumed to be 10 Å), andRσ

is the separation at which the radicals recombine (assumed to
be 5 Å). [The result of the simulation is insensitive toR0 and
Rσ over a wide range of their values, since on the time scale of
the singlet-triplet interconversion the exponential in eq 16
almost instantaneously reaches a value of unity, leaving just
the t -3/2 term with a constant multiplier.] We use Kaptein’s
assumptions (small singlet-triplet transition probability com-
pared to the singlet recombination rate, spin-independent re-
encounter statistics)54,55 regarding the treatment of repetitive
encounters. The recombination only occurs from the singlet
radical pair state in FMN-sensitized photo-CIDNP systems;16

therefore, the overall singlet yieldΦS and the residual nuclear
magnetization〈NZ〉 are calculated, up to a constant factor, as
integrated traces of the density operatorF̂(t) with the electron
singlet projectorP̂S and theP̂SN̂Z spin order, respectively:

Computing the geminate19F photo-CIDNP for the 3-fluoro-
tyrosine/FMN system with the static HamiltonianĤ0 from eq
9, and the complete relaxation matrix (Tables 2 and 3) obtained
from the dynamic Hamiltonian in eq 10 with computed (Table
1) spin system parameters using the re-encounter probability
model in eq 16 (the program source code is included in the
Supporting Information) results in the correlation-time depen-
dence shown in Figure 8. The computed geminate19F photo-
CIDNP effect (Figure 8, blue surface) goes negative as the
correlation time of the fluorine-containing radical is increased.
In other words, the model succeeds in predicting the experi-
mental results in Figures 1 and 2. The zero crossing for the19F
photo-CIDNP effect is predicted to occur aroundτc ) 0.5 ns,
in agreement with the GFP9 and Trp-cage (Figure 1E) data. The
direction of the correlation-time dependence is determined by
the sign of theXG1,HFC function, which is negative in the
3-fluorotyrosyl radical. Figure 8 also shows the other two cases,
namely whenXG1,HFCis positive and zero. With positiveXG1,HFC

of identical magnitude (e.g., in a radical with a different relative
orientation of hyperfine andg-tensors), there is constructive
interference between the RPM-generated and relaxation-gener-
ated geminate photo-CIDNP effect (black surface). When either
the HFC or the g-tensor is isotropic, the CIDNP effect
monotonically falls to zero, due to nonselective decoherence
(green surface), when the correlation times are increased. This
type of behavior is characteristic of a cross-correlated relaxation
process.

It thus appears that, after all the relaxation pathways have
been taken into account, the correlation-time dependence of the
high-field geminate19F photo-CIDNP effect may be explained,
completelyab initio and without adjustable parameters. The
important question now is which particular relaxation pathway
is responsible for this phenomenon. A systematic inspection of
the effect of each relaxation route given in Tables 2 and 3 shows
that the observed photo-CIDNP effect inversion at long cor-
relation times is due to the difference in the self-relaxation rates
of the L( + 2L(NZ andL( - 2L(NZ eigenstates:

This difference is plotted in Figure 9. Due to the presence of
the J(0) term in the spectral density part, this difference in-
creases linearly as a function of the rotational correlation time
and, at longer correlation times, quickly becomes large enough
(>109 s-1) to be operational on the sub-microsecond geminate
spin dynamics time scale.

Physically, the result above means that the two components
of the 19F hyperfine doublet relax in the transverse plane at
different rates; that is, electronL relaxes at different speeds for
different nuclear configurations, which ultimately yields an
electronic singlet or triplet that is conditional upon the nuclear
spin state- similar in nature to the usual CIDNP generation
scheme, but stemming from relaxation. These are pseudosecular
transverse processes, which is why they were not picked up by
the earlier models (some of which did include the secular
transverse processes56,57). When the radicals recombine, the

(50) Redfield, A. G. The Theory of Relaxation Processes. InAdVances in
Magnetic Resonance; Waugh, J. S., Ed.; Academic Press: New York, 1965;
Vol. 1, pp 1-30.

(51) Wagner-Rundell, N. D.Phil. thesis, University of Oxford, 2007.
(52) Noyes, R. M.J. Am. Chem. Soc.1956, 78, 5486-5490.
(53) Noyes, R. M.J. Am. Chem. Soc.1955, 77, 2042-2045.
(54) Kaptein, R.J. Am. Chem. Soc.1972, 94, 6262-6269.
(55) Kaptein, R.J. Am. Chem. Soc.1972, 94, 6251-6262.

f(t) )
Rσ(R0 - Rσ)

R0 x 1

4πDt3
exp[-

(R0 - Rσ)
2

4Dt ] (16)

ΦS ) ∫0

∞
Tr(P̂SF̂(t))f(t) dt;

〈NZ〉 ) ∫0

∞
Tr[P̂SN̂ZF̂(t)]f(t) dt (17)

RL+-2L+NZ
- RL++2L+NZ

)
XG1,HFC

15
[4J(0) + 3J(ωL)] (18)
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electron component disappears, leaving the correlation-time-
dependent nuclear magnetization behind. This situation is
qualitatively similar to that arising in1H-15N TROSY spectros-
copy of large proteins, where the DD-CSA cross-correlation
causes one signal in the15N doublet to relax much faster than
the other in the transverse plane.58 The situation that we have
here is mathematically similar, although the frequency differ-
ences are, of course, much larger in an electron-nucleus system.
The same cross-correlation is in part responsible for the line
width variations sometimes observed in conventional EPR
spectra: VO2+, for example, shows eight hyperfine lines with
widths that depend on the spin projection quantum number. The

∆HFC-∆g cross-correlation is responsible for the linear term
in this dependence.59

Conclusions

We have described the experimental results and the theoretical
models for relaxation processes occurring during fluorine-
containing geminate radical pair evolution on a nanosecond time
scale. At magnetic fields of over 10 T, electron-nucleus dipolar
cross-relaxation (the Overhauser effect)11,17,18and longitudinal
∆HFC-∆g (hyperfine anisotropy tog-tensor anisotropy) cross-
correlation14-16,19are shown to be negligibly slow. The dominant
relaxation process is the transverse∆HFC-∆g cross-correlation,
which is shown to lead to an inversion in the geminate19F
CIDNP phase for sufficiently large molecular tumbling rates.
The essential feature of the spin dynamics model employed is
the use of the complete spin state space and the complete
relaxation superoperator. On the basis of the results above, we
recommend this approach for reliable treatment of magnetoki-
netic systems in which relaxation effects are important.

Beyond its conceptual value, the correlation-time dependence
of the geminate19F photo-CIDNP effect does have practical
uses, as it provides a direct measure of the rotational correlation
time in short-lived radical species. In particular, using the
equations reported above, the fluorine-labeled tyrosine and
tryptophan amino acids may be used as quantitative probes of
side-chain correlation time in proteins,9 along with the use of
photo-CIDNP effects as solvent accessibility probes.8 Apart from
the fluorinated radicals, the results are likely to be applicable
to 13C- and 15N-containing radicals, as these nuclei can also
have rather large isotropic and anisotropic HFCs in aromatic
radicals. Another interesting question, in the context of the
unexplained CIDEP patterns recently discussed by Borbat et
al.,36,60is whether the complete relaxation matrix treatment also
predicts those CIDEP effects and which relaxation pathways
are responsible. More generally, because it is now possible to
do brute force analytical relaxation theory on nontrivial spin
systems,26 it seems worthwhile to embark on a deeper general
investigation into relaxation-driven radical spin dynamics.
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Figure 8. Rotational correlation-time dependence of the computed geminate
19F photo-CIDNP effect in the 3-fluorotyrosine/FMN system at 14.1 T
magnetic field. For the simulation details, see text.

Figure 9. Rotational correlation-time dependence of the difference between
the relaxation rates ofL( + 2L(NZ andL( - 2L(NZ eigenstates in 3-fluo-
rotyrosyl radical at 14.1 T using computed values of hyperfine andg-tensor
anisotropy.

Spin Relaxation Effects in Photo-CIDNP Spectroscopy A R T I C L E S

J. AM. CHEM. SOC. 9 VOL. 129, NO. 29, 2007 9013


